

Phase Determination Using Synchrotron Radiation

Manfred S. Weiss

Helmholtz-Zentrum Berlin für Materialien und Energie Macromolecular Crystallography (HZB-MX) Albert-Einstein-Str. 15 D-12489 Berlin, Germany msweiss @helmholtz-berlin.de

Structure Determination

Diffraction Data Collection

Diffraction Data Collection

h, k, I Miller indices I(h,k,l) intensity σI(hkl)

The Structure Factor Equation

The Structure Factor Equation

The calculation of F(hkl) from a structure (x_j, y_j, z_j) is nothing but a summation of the waves originating from each atom (j) in the direction defined by (hkl).

$$F(hkl) = \sum_{j} f_{j} e^{2\pi i(hx_{j}+ky_{j}+lz_{j})}$$

It is important to note that every atom of the structure contributes to each and every reflection of the diffraction pattern.

The Structure Factor Equation

The Electron Density Equation

The Electron Density Equation

The electron density $\rho(x,y,z)$ is a three-dimensional function (with the unit e/Å³), which describes where in the unit cell of the crystal the electrons (and therefore the atoms) are. It is basically the image of the structure we want to determine.

 $\rho(\mathbf{x},\mathbf{y},\mathbf{z}) = 1/V \Sigma_{hkl} \left[F(hkl) \right] e^{i\alpha(hkl)} e^{-2\pi i(hx+ky+lz)}$

It is important to note that every reflection (hkl) of the diffraction pattern contributes to the electron density ρ at each and every position (xyz) in the unit cell of the crystal.

The Phase Problem

From the diffraction pattern, we can only obtain the intensities I(hkl) of the reflections (hkl).

- $I(hkl) \propto F(hkl) \cdot F^{*}(hkl)$
 - $= |F(hkl)| e^{i\alpha(hkl)} \cdot |F(hkl)| e^{-i\alpha(hkl)}$ $= |F(hkl)|^{2}$

The phase α (hkl) cannot be measured.

A Flowchart of a Crystal Structure Analysis HZB Helmholtz

Phase Determination Methods

1. SIR, SIRAS, MIR, MIRAS

(single/multiple isomorphous replacement with anomalous scattering)

2. MAD

(multiple wavelength anomalous diffraction)

3. SAD (SAS)

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

(radiation damage induced phasing with anomalous scattering)

- 5. MR (molecular replacement)
- 6. Direct Methods

<u>Step 1</u>: put $|F_P(hkl)|$ and $|F_{PH}(hkl)|$ on the same scale

 $(\mathsf{R} = 100 \bullet \Sigma_{\mathsf{hkl}} | |\mathsf{F}_{\mathsf{PH}}| - |\mathsf{F}_{\mathsf{P}}| | / \Sigma_{\mathsf{hkl}} |\mathsf{F}_{\mathsf{P}}|)$

<u>Step 1</u>: put $|F_P(hkl)|$ and $|F_{PH}(hkl)|$ on the same scale

 $(\mathbf{R} = 100 \bullet \Sigma_{hkl} | |\mathbf{F}_{PH}| - |\mathbf{F}_{P}| | / \Sigma_{hkl} | \mathbf{F}_{P}|)$

<u>Step 2</u> : determine the positions of the heavy atoms (F_H)

from the differences ($|F_{PH}(hkl)| - |F_{P}(hkl)|$)

<u>Step 2</u> : determine the positions of the heavy atoms (F_H) from the differences ($|F_{PH}(hkl)| - |F_P(hkl)|$)

Step 3 : calculate $\alpha_P(hkl)$ from $|F_P(hkl)|$, $|F_{PH}(hkl)|$ and F_H

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous?

 \rightarrow a second heavy atom derivative (MIR)

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

- \rightarrow a second heavy atom derivative (MIR)
- \rightarrow density modification

Density Modification

Density Modification is a technique that uses additional information to improve an electron density

Density Modification

Density Modification is a technique that uses additional information to improve an electron density

solvent flattening

Solvent Flattening

Density Modification

Density Modification

Density Modification is a technique that uses additional information to improve an electron density

- solvent flattening
- non-crystallographic symmetry averaging
- □ histogram matching
- □ map interpretation and refinement

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

- \rightarrow a second heavy atom derivative (MIR)
- \rightarrow density modification
- \rightarrow incorporation of anomalous scattering (SIRAS)

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

- \rightarrow a second heavy atom derivative (MIR)
- \rightarrow density modification
- \rightarrow incorporation of anomalous scattering (SIRAS)
- → second derivative plus anomalous scattering (MIRAS)

Anomalous Scattering

Normal Scattering - 1

aka Elastic Scattering or Thomson Scattering or Scattering without Loss of Energy

An X-ray wave impinges on an atom and causes the electrons to oscillate in the same frequency as the incoming X-ray wave.

Normal Scattering - 2

The amplitude of the scattered wave depends on the number of electrons and the scattering angle.

The moving electrons emanate X-rays in all directions of

f(s) is a scalar function, dependent only on the atom type and 2θ .

Normal Scattering - 3

since $\rho(\mathbf{r}) = \rho(-\mathbf{r}) \rightarrow f(\mathbf{s}) = f(-\mathbf{s})$, this results eventually in Friedel's Law

Anomalous Scattering - 1

When the energy of the incident X-ray wave is close to an elemental absorption edge, something else happens in addition.

In addition to being scattered elastically, the incident X-ray wave is absorbed and ejects a core electron. A higher-shell electron then falls back to a lower shell, emitting X-radiation.

Anomalous Scattering - 2

As a net result of absorption, the scattered wave is retarded and the atomic form factor becomes a vectorial quantity.

f ° is the normal atomic form factor, Δf ' is called the *dispersive component* and Δf '' the *anomalous component*.

Anomalous Scattering - 3

P

Thus, the total structure factor (h,k,l)F_{PH} contains the *normal* **scattering** of all atoms $F_P + F_H^0$, the dispersive component of the anomalously scattering atoms ΔF_{μ} ' and the anomalous component of the anomalously scattering atoms ΔF_{H} ".

Anomalous Scattering - 4

As consequence of anomalous scattering, Friedel's Law is not valid anymore.

Anomalous Scattering - 5

Synchrotron Radiation

Synchrotron Radiation

occurs when a charge moves at *relativistic speed* following a *curved* trajectory.

- 1. high brilliance
- 2. large spectral range
- 3. time structure

Anomalous Scattering - 6

The tunable synchrotron radiation can be used to maximize the effect of anomalous scattering.

How Can This Be Measured?

beamstop (ESCAN)

How Can This Be Measured?

How Can This Be Measured?

'p86 Se K 09:06:53.efs' using 1:2 ----

Measured fluorescence

Derived anomalous scattering factors

$$f''(\omega) = \left(m\omega \ c/4\pi Ne^2\right)\mu(\omega)$$

$$f'(\omega) = (2/\pi) \int_{0}^{\infty} \left[\omega' f''(\omega') / (\omega^{2} - \omega'^{2}) \right] d\omega'$$

What is this Good for?

- 1. Phase Determination
- 2. Structure Validation
- 3. Element Identification

The Harker Construction - SIRAS

Which Elements Can Be Used?

1. conventional heavy-atom derivatization by soaking or co-crystallization

1. conventional heavy-atom derivatization by soaking or co-crystallization

2. quick-soaking

1. conventional heavy-atom derivatization by soaking or co-crystallization

- 2. quick-soaking
- 3. quick-soaking using anions (Br^- , I^- , I^-/I_2 , ...)

1. conventional heavy-atom derivatization by soaking or co-crystallization

- 2. quick-soaking
- 3. quick-soaking using anions (Br⁻, I⁻, I⁻/I₂, ...)
- 4. pressurization using noble gases (Xe, Kr)

1. conventional heavy-atom derivatization by soaking or co-crystallization

- 2. quick-soaking
- 3. quick-soaking using anions (Br⁻, I⁻, I⁻/I₂, ...)
- 4. pressurization using noble gases (Xe, Kr)
- 5. covalent modification of the protein (e.g. Met \rightarrow Se-Met) or of DNA (T \rightarrow Br-U)

Phase Determination Methods

1. SIR, SIRAS, MIR, MIRAS

(single/multiple isomorphous replacement with anomalous scattering)

2. MAD

(multiple wavelength anomalous diffraction)

3. SAD (SAS)

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

(radiation damage induced phasing with anomalous scattering)

- 5. MR

(molecular replacement)

6. Direct Methods

The MAD Method

Instead of using two different crystals, we can also collect data from one crystal at two (or more) different wavelengths.

1. in proteins: replacement of Met with Se-Met

- 1. in proteins: replacement of Met with Se-Met
- 2. almost any other heavy atom derivative

Periodic Table of the Elements

- 1. in proteins: replacement of Met with Se-Met
- 2. almost any other heavy atom derivative
- 3. naturally present Fe, Cu, Zn, etc.

- 1. in proteins: replacement of Met with Se-Met
- 2. almost any other heavy atom derivative
- 3. naturally present Fe, Cu, Zn, etc.

4. in DNA: replacement of T with Br-U

Phase Determination Methods

1. SIR, SIRAS, MIR, MIRAS

(single/multiple isomorphous replacement with anomalous scattering)

2. MAD

(multiple wavelength anomalous diffraction)

3. SAD (SAS)

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

(radiation damage induced phasing with anomalous scattering)

5. MR

(molecular replacement)

6. Direct Methods

The SAD/SAS Method

SIR and SAD

1. Se-Met-protein

1. Se-Met-protein

2. almost any other heavy atom derivative

1. Se-Met-protein

- 2. almost any other heavy atom derivative
- 3. naturally present Fe, Cu, Zn, etc.

- 1. Se-Met-protein
- 2. almost any other heavy atom derivative
- 3. naturally present Fe, Cu, Zn, etc.

4. light atoms (P, S, Cl, Ca, ...), the absorption edges of which are not accessible

Long Wavelength S-SAD

Long Wavelength S-SAD

Long Wavelength S-SAD

4

Phase Determination Methods

1. SIR, SIRAS, MIR, MIRAS

(single/multiple isomorphous replacement with anomalous scattering)

2. MAD

(multiple wavelength anomalous diffraction)

3. SAD (SAS)

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

(radiation damage induced phasing with anomalous scattering)

5. MR

(molecular replacement)

6. Direct Methods

The RIP Method

The RIP method is in principle applicable to all crystals, which are damaged by X-rays (or UV).

Phase Determination Methods

1. SIR, SIRAS, MIR, MIRAS

(single/multiple isomorphous replacement with anomalous scattering)

2. MAD

(multiple wavelength anomalous diffraction)

3. SAD (SAS)

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

(radiation damage induced phasing with anomalous scattering)

5. MR

(molecular replacement)

6. Direct Methods
The MR Method

Molecular replacement can be used to solve a structure when a homologous structure is available.

When the homologous structure can be correctly oriented and positioned (6 parameters), it can be used as a starting point for phase calculation.

MR does not necessarily need synchrotron radiation, but MR phases can be validated by *anomalous scattering*.

Molecular Replacement

Molecular Replacement

Phase Determination Methods

1. SIR, SIRAS, MIR, MIRAS

(single/multiple isomorphous replacement with anomalous scattering)

2. MAD

(multiple wavelength anomalous diffraction)

3. SAD (SAS)

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

(radiation damage induced phasing with anomalous scattering)

- 5. MR
 - (molecular replacement)
 - 6. Direct Methods

Direct Methods

This is the method of choice in small molecule crystallography.

It usually needs a resolution better than 1.2 Å.

For proteins, it works only in exceptional cases:

- < 1000 non-hydrogen atoms,
- heavy atoms present.

The Electron Density Equation

dimensional electron density function $\rho(x,y,z)$ can be calculated.

Once the phases α (hkl) have been determined, the three-

$\rho(x,y,z) = 1/V \Sigma_{hkl} [F(hkl)] e^{i\alpha(hkl)} e^{-2\pi i(hx+ky+lz)}$

Electron Density

Signal Strength and Data Quality

~1%

SIR:
$$R = 100 \cdot \Sigma_{hkl} ||F_{PH}| - |F_{P}|| / \Sigma_{hkl} |F_{P}|$$
 15-30%
SAD: $R_{anom} = 200 \cdot \Sigma_{hkl} ||I^+ - |I^-| / \Sigma_{hkl} ||I^+ + |I^-|$ ~5%

S-SAD:

Signal Strength and Data Quality

$$R_{merge} = \frac{\sum_{hkl} \sum_{i} |I_{i,hkl} - \overline{I}_{hkl}|}{\sum_{hkl} \sum_{i} |I_{i,hkl}|}$$

$$R_{r.i.m.} = \frac{\sum_{hkl} (N/(N-1))^{1/2} \sum_{i} |I_{i,hkl} - \overline{I}_{hkl}|}{\sum_{hkl} \sum_{i} |I_{i,hkl}|} = R_{meas}$$

$$R_{p.i.m.} = \frac{\sum_{hkl} (1/(N-1))^{1/2} \sum_{i} |I_{i,hkl} - \overline{I}_{hkl}|}{\sum_{hkl} \sum_{i} |I_{i,hkl}|}$$

$$R_{anom} = \frac{\sum_{hkl} |I_{hkl} - \overline{I}_{hkl}|}{1/2 \sum_{hkl} |I_{hkl} + \overline{I}_{hkl}|}$$

ourse, 03.09.2013, Budapest, Hungary

$f = f^{\circ} + \Delta f' + i\Delta f''$

Normal and Anomalous Scattering

• Determination of Δf and Δf "

The Phase Problem

MAD, SAD, RIP(AS), MR, Direct Methods)

Zentrum Berlin

Two Fundamental Equations in Crystallography,

F(hkl) and p(x,y,z)

Thank you for your attention