MACROMOLECULAR STRUCTURE VALIDATION

Krisztián Fodor

Eötvös Loránd University, Department of Biochemistry

WHY DOING VALIDATION?

- To check on the validity of the thousands to millions of measurements in the experiment
- To check on how consistent the model is with the experimental data
- To check on the consistency of the model with known physical and chemical properties of the protein

GLOBAL VS. LOCAL CRITERIA

- Global evaluation criteria apply to the entire structure
- R-factor, completeness, anisotropy, etc.
- Local evaluation criteria apply to local regions or individual residues
- Bond lenghts and angles, rotamer conformations, steric clashes etc.

WHAT MAKES A GOOD MODEL

• Chemistry

- Bond lenghts and angles are close to ideal, flat aromatic rings, good chirality (no D-amino acids unless verified)
- Physics
- Crystal packing is OK, B-factor distribution is good, atoms are bonded, occupancies are 1
- Statistics
- The model well explains experimental data
- Structure
- -Reasonable Ramachandran plot, side chain conformation are OK
- Biology

VALIDATION TOOLS

- Coot
- MolProbity
- PROCHECK
- Etc.

Соот

🗯 X11 Applications Edit Window Help 👸 🕙 🕴 🛜 🚸 🗖 💽 (Charged) Tue 2:10	PM Q
\varTheta 🔿 🔿 🖹 🕅 🕅 🕅 🕅	_
<u>F</u> ile <u>E</u> dit <u>C</u> alculate <u>D</u> raw <u>M</u> easures <u>V</u> alidate HID About E <u>x</u> tensions	
🗎 🔍 Reset View 🗏 Display Manager 🗧 Ramachandran Plot	R/RC
Kleywegt Plot	Мар
y 👔 👔 🚺 🕼 Incorrect Chiral Volumes	()
z 📩 x 💦 😵 🖓 Unmodelled blobs	\odot
Difference Map Peaks	Ť
♦ Check/Delete Waters	-4
Geometry analysis	<i>(e</i>
Litemp fact variance analysis	55
Contraction of a land to a	
Rotamer analysis	2
C? Density fit analysis	ス
Probe clashes	\mathcal{R}
NCS Differences	<u>@</u>
🐏 👷 💭 🖓 Highly coordinated waters	20
Pukka Puckers?	Side
Alignment vs PIR	
	<i>4</i> 9
	**
	*X
	+
) DIVE HERE WAS BELLING TO THE AND A	<u>a</u>
	8
	4
	-

RAMACHANDRAN PLOT

- The conformation of the protein backbone is defined by three torsion angles
- Phi (Φ)
- $Psi(\Psi)$
- Omega (ω)

RAMACHANDRAN PLOT

• A scatter plot for psi, phi angles for all residues Phi (Φ): limited to the range between -60° and 150° Psi (Ψ): limited to regions centered about -60° and 120°

RAMACHANDRAN PLOT

- Good models have most of the residues clustered tightly in the most-favoured regions with very few outliers
- Good, but low-resolution models, may have less pronounced clustering, but still have few outliers
- **Poor models** have no clustering and there are many outliers

From the lecture of Ranu Kadirvelraj, CCRC-UGA, 2008

KLEYWEGT PLOT

• Examine differences between the torsions of NCS-related chains

OTHER VALIDATION TOOLS

- Incorrect chiral volumes
- Check for chiral centres with wrong handedness
- Geometry analysis
- Check for improbable bond lengths, angles etc.
- Rotamer analysis
- Check for unusual protein side chain conformations

• ... some more

MolProbity

- Structure validation web-service
- Based on:
- 1. Optimized hydrogen placement and all-atom contact analysis
- 2. Updated versions of covalent-geometry and torsion angle criteria

PROBITY		Main page		
Main page About hydrogens Evaluate X-ray	FILE UPLOAD/RETRIEVAL (MORE OPTIONS)			
Evaluate NMR Fix up structure Work with kins	PDB/NDB code:	type: PDB coords		
View & download files Lab notebook	Choose File No file chosen	type: PDB coords 🔹		
Feedback & bugs Site map Save session Log out	We have updated Reduce to add hydrogens at a length more consistent with electron-cloud positions, and accordingly adjusted Probe to compensate for the change. This will affect comparison of results calculated with older versions of MolProbity, bu clashscores. For analyses using nuclear-position hydrogens, you have the option of selecting nuclear x-H positions when add about this change here.			

ADDITION OF HYDROGEN ATOMS

- The presence of H atoms is a prerequisite for allatom contacts analysis
- Addition and optimization with the software REDUCE onto everything except waters

Save session Log out

You are using 1% of your 200 Mb of disk space.

Make simple kinemages

Downgrade file to PDBv2.3 format (for download only)

Fill gaps in protein backbone with JiffiLoop (beta test) Analyze geometry without all-atom contacts

FITTING ASN, GLN AND HIS SIDE CHAINS

- A common problem: side chain ends of Asn, Gln and His are often placed 180° backwards
- Automatic correction is the default option of MolProbity (don't forget to download the new file...)

ALL ATOM CONTACT ANALYSIS

- Once hydrogens are added: all-atom contact and geometry analysis option is enabled
- All-atom contacts:
- Performed by the program called $\ensuremath{\mathsf{PROBE}}$

A 0.5Å diameter ball is rolling around the van der Waals surfaces of atoms to meaure the amount of overlaps between pairs of non-bonded atoms

ALL ATOM CONTACT ANALYSIS

- Overlap by more than 0.4Å: serious clash
- Included in the reported clashscore
- One of the atoms is modeled incorrectly
- Clashscore: the number of serious clashes per 1000 atoms (percentile rank within the relevant resolution range is also given)

RAMACHANDRAN AND ROTAMER ANALYSES

- Reference distributions: 100 000 residues in 500 files, quality filtered
- Absolute goals:
- >98% for Ramachandran favored
- <0.2% for Ramachandra outliers</p>
- < 1% for poor rotamers
- 0 for C^{β} deviation outliers

Protein Geometry	Poor rotamers	20	1.81%	Goal: <1%
	Ramachandran outliers	2	0.15%	Goal: <0.05%
	Ramachandran favored	1292	97.14%	Goal: >98%
	MolProbity score [^]	1.51		$98^{\text{th}} \text{ percentile}^* (N=10167, 2.20\text{\AA} \pm 0.25\text{\AA})$
	Cβ deviations >0.25Å	2	0.16%	Goal: 0
	Bad backbone bonds:	0/5376	0.00%	Goal: 0%
	Bad backbone angles:	0/6706	0.00%	Goal: <0.1%
	Protein Geometry	Poor rotamers Ramachandran outliers Ramachandran favored MolProbity score^ Cβ deviations >0.25Å Bad backbone bonds: Bad backbone angles:	Poor rotamers 20 Ramachandran outliers 2 Ramachandran favored 1292 MolProbity score^ 1.51 Cβ deviations >0.25Å 2 Bad backbone bonds: 0 / 5376 Bad backbone angles: 0 / 6706	Poor rotamers 20 1.81% Ramachandran outliers 2 0.15% Ramachandran favored 1292 97.14% MolProbity score^ 1.51 Cβ deviations >0.25Å 2 0.16% Bad backbone bonds: 0 / 5376 0.00% Bad backbone angles: 0 / 6706 0.00%

In the two column results, the left column gives the raw count, right column gives the percentage.

• Poor rotamers: not outliers, since they are disfavored, but can be stabilized by tight packing or hydrogen bonds

COVALENT-GEOMETRY ANALYSES

- Local geometry outliers are often the result of misfitting (useful diagnostics, especially for bond angles)
- C^{β} deviation: overall distortion from ideality

REASONS OF GEOMETRIC DISTORTIONS

- Low resolution (alternative conformations)
- Radiation damage
- Building problems (human factor)

THE OVERALL MOLPROBITY SCORE

- People like to describe things with one single number...
- Log-weighted combination of :
- Clashscore
- Percentage of Ramachandran not favored
- Percentage of bad side-chain rotamers

 $MPscore = 0.426 * ln(1 + clashscore) + 0.33 * ln(1 + max(0, rota_out \mid -1)) + 0.25 * ln(1 + max(0, rama_iffy \mid -2)) + 0.5 * ln(1 + ma$

If smaller than the actual resolution: better than the average structure at this resolution